1、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
答案与解析:
把路程当作1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
2、分母不大于60,分子小于6的最简真分数有____个?
答案与解析:
分类讨论:
(1)分子是1,分母是2~60的最简真分数有59个:
(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);
(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);
(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);
(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5—44(个)。
这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个)。
1、某个体商人以年利息14%的利率借别人4500元,第一年末偿还2130元,第二年以某种货物80件偿还一部分,第三年还2736元结清,他第二年末还债的货物每件价值多少元?
2、小明于今年七月一日在银行存了活期储蓄100元,如果年利率是1。98%,到明年七月一日,小明可以得到多少利息?
3、买了8000元的国家建设债卷,定期3年,到期他取回本息一共10284元,这种建设债卷的年利率是多少?
答案与解析:
1、解:根据“总利息=本金×利率×时间”
第一年末的本利和:4500+4500×14%×1=5130(元)
第二年起计息的本金:5130-2130=3000(元)
第二年末的本利和:3000+3000×14%×1=3420(元)
第三年的本利和为2736元,
故第三年初的本金为:2736÷(1+14%)=2736÷1.14=2400(元)
第二年末已还款的金额为3420-2400=1020(元)
每件货物的单价为1020÷80=12.75(元)
答:他第二年末还债的货物每件价值12.75元
2、解:1000×1.98%×1×(1-20%)=15.84(元)
答:小明可以得到15.84元利息
3、解:设年利率为X%
(1)(单利)
8000+8000×X%×3=10284
X%=9.52%
(2)(复利)
8000(1+X%)3=10284
X%=9.52%
答:这种建设债卷利率是9.52%
1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?
答案与解析:
人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到
3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183
答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?
答案与解析:
①做正方形的另一条对角线。得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:
8÷2=4(直角边)
4×4÷2=8(平方米)
③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)
1、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的.。那么小轿车是在上午什么时候追上大轿车的。
答案与解析:
这个题目和第8题比较近似。但比第8题复杂些!
大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。
说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。
既然后来两人都没有休息,小轿车又比大轿车早到4分钟。
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上。
所以此时的时刻是11时05分。
2、客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。
答案与解析:
第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。那么有120-20=100千米即为甲、乙的全长。
甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
答案与解析:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的'最小公倍数。36、30、48的最小公倍数是720。
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
题目:
一块牧场长满了草,每天均匀生长。这块牧场的草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃多少天?
答案与解析:
假设1头牛1天吃草的.量为1份
(1)每天新生的草量为:(10×40-15×20)÷(40-20)=5(份);
(2)原来的草量为:10×40-40×5=200(份);
(3)安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
甲、乙两人分别以每小时6千米和每小时4千米的速度从相距30千米的两地向对方的`出发地前进.当两人之间的距离是10千米时,他们走了________小时.
答案与解析:
本题有两种情况,一种是甲、乙两人还未相遇过,此时两人一共走了30-10=20(千米),另一种是甲、乙两人相遇过后继续向前走到相距10千米,一共走了30+10=40(千米),所以有两种答案:(30-10)(6+4)=2(小时);或(30+10)(6+4)=4(小时).
有A,B,C三个数,A加B等于252,B加C等于197,C加A等于149,求这三个数.
解:
从B+C=197与A+C=149,就知道B与A的差是197-149,题目又告诉我们,B与A之和是252.因此
B=(252+197-149)÷2=150,
A=252-150=102,
C=149-102=47.
答:A,B,C三数分别是102,150,47.
注:还有一种更简单的方法
(A+B)+(B+C)+(C+A)=2×(A+B+C).
上面式子说明,三数相加再除以2,就是三数之和.
A+B+C=(252+197+149)÷2=299.因此
C=299-252=47,
B=299-149=150,
A=299-197=102.
我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的`速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解答案与解析:是[10×(22-6)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
解:把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。
平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
一只集装箱,它的内尺寸是18×18×18。现在有批货箱,它的外尺寸是1×4×9。问这只集装箱能装多少只货箱?
解:因为集装箱内尺寸18不是货箱尺寸4的倍数,所以,只能先在18×16×18的空间放货箱,可放18×16×18÷(1×4×9)=144(只)。这时还有18×2×18的空间,但只能在18×2×16的空间放货箱,可放18×2×16÷(1×4×9)=16(只)。最后剩下18×2×2的空间无法再放货箱,所以最多能装144+16=160(只)。
18×16×18÷(1×4×9)+18×2×16÷(1×4×9)
=144+16
=160(只)
一个底面半径是10厘米的圆柱形瓶中,水深8厘米,要在瓶中放入长和宽都是8厘米、高是15厘米的一块铁块,把铁块竖放在水中,水面上升几厘米?
解:在瓶中放铁块要考虑铁块是全部沉入水中,还是部分沉入水中。如果铁块是全部沉入水中,排开水的体积是8×8×15=960(立方厘米)。而现在瓶中水深是8厘米,要淹没15厘米高的铁块,水面就要上升15—8=7(厘米),需要排开水的体积是(3.14×10×10—8×8)×7=1750(立方厘米),可知铁块是部分在水中。
当铁块放入瓶中后,瓶中水所接触的底面积就是3.14×10×10—8×8=250(平方厘米)。水的形状变了,但体积还是3.14×10×10×8=2512(立方厘米)。水的高度是2512÷250=10.048(厘米),上升10.048—8=2.048(厘米)
3.14×10×10×8÷(3.14×10×10—8×8)—8
=2512÷250—8
=10.048—8
=2.048(厘米)
有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?
解:中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)
0.7÷6的平方=7/360(米)=1又17/18(厘米)
一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。
解:我们知道:体积=长×宽×高;由长增加2厘米,体积增加40立方厘米,可知宽×高=40÷2=20(平方厘米);由宽增加3厘米,体积增加90立方厘米,可知长×高=90÷3=30(平方厘米);由高增加4厘米,体积增加96立方厘米,可知长×宽=96÷4=24(平方厘米)。而长方体的表面积=(长×宽+长×高+宽×高)×2=(20+30+24)×2=148(平方厘米)。即
40÷2=20(平方厘米)
90÷3=30(平方厘米)
96÷4=24(平方厘米)
(30+20+24)×2
=74×2
=148(平方厘米)
在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?
解:从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。
去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)
书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?
解:从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。
有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?
解:要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:
两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。
由数字0,1,2,3组成三位数,问:
①可组成多少个不相等的三位数?
②可组成多少个没有重复数字的三位数?
解:在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。
①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。
②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。
甲、乙、丙3个试管中各盛有10克、20克、30克水。把某种质量分数的盐水10克倒入甲管中,混合后取10克倒入乙管中,再混合后从乙管中取出10克倒入丙管中。现在丙管中的盐水的质量分数为0.5%。最早倒入甲管中的盐水质量分数是多少?
【思路导航】混合后甲、乙、丙3个试管中应有的盐水分别是20克、30克、40克。根据题意,可求出现在丙管中盐的质量。又因为丙管中原来只有30克的水,它的盐是从10克盐水中的乙管里取出的。由此可求出乙管里30克盐水中盐的质量。而乙管里的盐又是从10克盐水中的甲管里取出的,由此可求出甲管里20克盐水中盐的质量。而甲管里的盐是某种浓度的盐水中的盐,这样就可得到最初倒入甲管中盐水的质量分数。
丙管中盐的质量:(30+10)×0.5%=02(克)
倒入乙管后,乙管中盐的质量:0.2×【(20+10)÷10】=0.6(克)
倒入甲管,甲管中盐的质量:0.6×【(10+10)÷10】=1.2(克)
1.2÷10=12%
答:最早倒入甲管中的盐水质量分数是12%。
1.小学六年级奥数题
1、有鸡兔共20只,脚44只,鸡兔各几只?
2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?
3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?
4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。这两桶油各有多少千克?
5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。6元,求打破了几只花瓶?
6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?
7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元。该校每学期买两种墨水各多少瓶?
8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?
9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。问小毛做对几道题?
10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。他兑换了两种面额的人民币各多少张?
2.小学六年级奥数题
1、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。6元,问这次搬运中玻璃损坏了几只?
2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?
3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?
4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?
5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?
6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?
8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。现有100千克油装了共60个瓶子。问大、小油瓶各多少个?
9、红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
10、刘老师带了41名同学去北海公园划船,共租了10条船。每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
3.小学六年级奥数题
1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
4.小学六年级奥数题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789……2005,这个多位数除以9余数是多少?
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值。
3.已知A、B、C都是非0自然数,A/2+B/4+C/16的近似值市6.4,那么它的准确值是多少?
4.一个三位数的各位数字之和是17。其中十位数字比个位数字大1。如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数。
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数。
10.如果现在是上午的10点21分,那么在经过28799……99(一共有20个9)分钟之后的时间将是几点几分?
5.小学六年级奥数题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
2.甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?
3.在一个600米的环形跑道上,兄弟两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
6.小学六年级奥数题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
3.甲乙两车分别从A、B两地出发,相向而行,出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A、B两地相距多少千米?
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
5.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?
一、填空(第8题4分,其他每小题均为2分共20分)
1、75公顷= 平方千米 100分钟=( )天
2、把一根3米长的钢材,从一头到另一头截成每段长 米的小段要截( )次,每段占全( )
3、1天的 和( )小时的 一样长。
4、六年(1)班女生占男生的 ,则男生占全班的( )。
5、甲比乙多 ,乙比丙少25%,则甲是丙的( )%。
6、一个半圆的直径是10厘米,它的周长是( )
7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。
8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。
9、两个质数倒数相加,和的分子是25,分母是( )。
二、判断题:(10分)
1、1米的25%是25%米。 ( )
2、一个数的倒数,有可能与这个数相等。 ( )
3、如果ab=1,则a是倒数。 ( )
4、直径是4分米的圆,它的周长和面积相等。 ( )
5、生产101个零件,101个合格,合格100%。 ( )
三、选择题。(10分)
1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。
A> B= C< D不能比较
2、一个数和它的倒数之和一定( )1。
A> B= C< D无法比较
3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。
A赚了 B亏了 C不赚不亏 D无法比较
4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。
A直角 B等边 C等腰 D直角等腰
5、甲乙两数的和是2 ,甲减去乙的.差为1,则乙数是( )。
A1 B2 C8 D0
四、计算:
1、直接写出的得数:(8分)
45÷4 = ( 256+14 )×12=
152 ÷ 12=
2、能简算的要简算。(18分)
12.5%× 0.25÷ 1÷(0.075+.089 )=
五、解决问题:(4+4+4+5+5=22分)
1、一堆煤,用去总数的40%后,又运进24吨,现在的吨数是原来总数的 ,这堆煤原有多少吨?
2、有一项工程,甲、乙二人共同做需要6天完成。现在两人做了2天后,剩下的由乙单独做,结果又做了10天才完成。乙单独做这项工程需要多少天完成?
3、一条绳子用去全长的 多4米,剩下的部分比用去的部分多2米。这条绳子全长多少米?
4、从一张面积是16平方分米的正方形铁皮中,剪下一个面积为最大的圆,剩下铁皮的面积是多少平方分米?
5、甲、乙两列火车从相距480千米的两地同时相对开出,甲车每小时行80千米, 小时后两车相距全程的70%。乙车每小时行驶多少千米?
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌。"结果王老师只猜对了一个。那么小明得多少牌,小华得多少牌,小强得多少牌。
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的`情况,舍弃不合理的情形,最后得到问题的解答。这里以小明所得奖牌进行分析。
逻辑推理问题奥数竞赛题:
解:
①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论。如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意。
③若小明得铜牌时,仍以小华得奖情况分别讨论。如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。
综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。
标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。小方先拉一下A的'开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去。他拉动了1990次后,亮着的灯是哪几盏?
答案:B、C、D、G
解析:小方循环地从A到G拉动开关,一共拉了1990次。由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次。然后又拉了A和B的开关一次。每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次。A和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G。
1.某书店一月份出售书1235本,二月份出售1009本,三月份出售1340本,四月份比三月份少出售208本,五月份至年终书的出售量比前4个月的3.5倍少198本。这年平均每月出售多少本书?
2.前进化肥厂去年上半年平均每月生产化肥9800吨,下半年平均每月生产化肥18700吨,今年计划比去年增产15000吨,今年计划平均每月生产化肥多少吨?
3.一列火车前5小时行驶了260千米,后7小时比前5小时每小时平均多行驶9千米,这列火车平均每小时行驶多少千米?
4.某农场35人用一周时间锄一块地,前3天共锄地70.3亩,后4天共锄地120.8亩,平均每人每天锄地多少亩?
解析:
1.[(1235+1009+1340+1340-208)+(1235+1009+1340+1340-208)]3.5-198=1752(本)
2.(9800×6+18700×6+15000)÷12=15500(吨)
3.260+(260÷5+9)7÷(5+7)=57.25千米
4.(70.3+120.8)÷(3+4)÷35=0.78(亩)
有一本书,叫做《一千零一夜》。
用数字1、2、3、4、5组成一个式子,使它等于1001,每个数字各用一次,数的排列顺序可以打乱,添什么运算符号也随便,只要运算结果等于1001。能做到吗?
可以做到。下面就是一个满足条件的式子:
53×4×2+1=1001。
在这里,记号53表示3个5连乘:
53=5×5×5。
记号53读成5的`3次方,简称为5的立方。一个每边长度为5的正方体,它的体积等于5的立方。
浓度为60%的酒精溶液200g,与浓度为30%的酒精溶液300g,混合后所得到的酒精溶液的浓度是( )。
分析:溶液质量=溶质质量+溶剂质量
溶质质量=溶液质量×浓度
浓度=溶质质量÷溶液质量
溶液质量=溶质质量÷浓度
要求混合后的溶液浓度,必须求出混合后溶液的总质量和所含纯酒精的质量。
混合后溶液的总质量,即为原来两种溶液质量的和:
200+300=500(g)。
混合后纯酒精的含量等于混合前两种溶液中纯酒精的和:
200×60%+300×30%=120+90=210(g)
那么混合后的酒精溶液的浓度为:
210÷500=42%
解答:
答:混合后的`酒精溶液的浓度为42%。点津:当两种不同浓度的溶液混合后,其中的溶液总量和溶质总量是不变的。
小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得 56分。小华答对了几题?
假设小华全部答对:该得4×20=80(分),现在实际只得了56分,相差80-56=24(分),因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分(4+4=8),根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3(题),一共做20题,答错3题,答对的`应该是:
20-3=17(题)
4×17=68(分)(答对的应得分)
4×3=12(分)(答错的应扣分)
68-12=56(分)(实际得分)
某校有100名学生参加数学竞赛,平均得63分,其中男生平均得60分,女生平均得70分,那么,男生比女生多多少名?
假设100名同学都是男生,那么应得分
60×100=6000(分)
比实际少得
63×100-6000=300(分)
原因是男生平均分比女生少
70-60=10(分)
求出女生人数为
300 ÷ 10=30(名)
奥数题一
一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的六分之五即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?
答案与解析:
假设甲效率为“6”(不一定设1,为迎合分数凑成整数设数),原合作总效率为6+乙效率
那么甲效率提高三分之一后,合作总效率为8+乙效率
所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4
原来总效率=6+4=10
乙效率降低四分之一后,总效率为6+3=9
所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间
解得规定时间为675分
答:规定时间是11小时15分钟
奥数题二
甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米?
答案与解析:“第一次相遇点距B处60 米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距A地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。
奥数题三
把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
答案与解析:
首先研究能被9整除的.数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到2007能被9整除。所以答案为1
奥数题四
现有浓度为10%的盐水20千克,在该溶液中再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
答案与解析:
10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。
小明用5天时间看完了一本200页的故事书。已知第二天看的页数比第一天多,第三天看的页数是第一、二两天看的页数之和,第四天看的'页数是第二、三两天看的页数之和,第五天看的页数是第三、四两天看的页数之和。那么,小明第五天至少看了页。
设小明第一天看了a页,第二天看了b页,则前五天看的页数依次为:
a,b,a+b,a+2b,2a+3b。
上面各个数的和是200,得到
5a+7b=200。
因为5a与200都是5的倍数,所以b是5的倍数。因为b>a,所以上式只有两组解:
b=20,a=12;b=25,a=5。
将这两组解分别代入2a+3b,得到第五天至少看了84页。
将所有自然数自1开始写下去,得到:1234567891011……试确定在206788个位置上出现的`数字。
答案与解析:7从1写到9用了9个数字;
从10到99用了2×90=180个数字;
从100到999用了3×900=2700个数字;
从1000到9999用了4×9000=36000个数字;
即从1写到9999共写了9+180+2700+36000=38889个数字。
从10000写到99999用了450000个数字,而450000大于206788,因此206788个位数位置上对应数字所在的自然数在10000与99999之间。因此从10000开始还写了206788——38889=167899个数字。由于10000与99999之间每个自然数占5个数字,因此写到完整自然数应用去5的倍数个数字。考虑到从10000开始一共用到了167899+1=167900个数字。这样一共写了167900÷5=33580个数字,即从10000写到了45579,于是第206789个数字为9,第206788个数字为7。
原来定好一等奖1名,二等奖3名,三等奖5名。一等奖的奖金是1120元,要求每个一等奖的奖金是每个二等奖的2倍,每个二等奖的奖金是每个三等奖的2倍。由于要临时变动,改为一等奖3名,二等奖3名,三等奖3名,奖金总额不变,每等奖奖金数额之间的倍数关系也不变,应该怎么重新分配?
答案与解析:
一等奖的奖金是1120元,二等奖的奖金是1120÷2=560元,三等奖的.奖金是560÷2=280元。所以奖金总额为:1120+560×3+280×5=4200元;假设临时变动后,三等奖的奖金为1份,由于每等奖奖金数额之间的倍数关系不变,所以二等奖奖金为1×2=2份,一等奖的奖金为2×2=4份,则所有的奖金总份数为:1×3+2×3+4×3=21份;总额还是4200元,所以分配方案就出来了。
总奖金数:1120+(1120÷2)×3+(1120÷4)×5=4200元;
总份数:1×3+2×3+4×3=21份;
每一份的钱数为:4200÷21=200元;
所以三等奖为200元,二等奖为200×2=400元,一等奖为400×2=800元
日常生活中,常见的白糖、盐巴、味精等物质,在水、酒等液体中能溶解,象白糖这样能溶于水或其它液体中的纯净物质叫做溶质;象水、酒这样能溶解物质的纯净(不含杂质)液体称为溶剂,溶质与溶剂的混和物(如糖水、盐水等)叫溶液,溶质在溶液中所占的百分比叫做浓度,又叫百分比浓度,它在生产和生活中应用很广泛。计算浓度时,所用的数量关系有:
例1
把50克纯净白糖溶于450克水中得到浓度多大的糖水?
解溶液量=50+450=500(克),答:糖水的浓度为10%。
例2
小明家要配制浓度为5%的盐水50千克给水稻浸种,怎样配制?
解溶液中盐的.含量为(50×5%=)2.5(千克),水的含量为(50-2.5=)47.5(千克)。
所以,把2.5千克盐放在47.5千克水中充分搅匀,就得到所需盐水了。
例3
千克浓度为5%的葡萄糖溶液中含蒸馏水多少千克?
解溶液中葡萄糖的含量为
(2000×5%=)100(克),∴蒸馏水的含量为(2000-100=)1900(克)。
答:含蒸馏水1.9千克。
例4
要把浓度为95%的酒精600克,稀释成浓度为75%的消毒酒精,需要加入多少克蒸馏水?
解加水前后溶液中的纯酒精(溶质)含量不变,知道加水后的浓度,而溶质可求,所以,加水后溶液量为
600×95%÷75%=760(克),需加蒸馏水(760-600=)160(克)。
答:需要加入160克蒸馏水。
例5
为了防治果树害虫,一位果农把浓度为95%的乐果250克倒入50千克的水中,配成溶液对果树进行喷射,这种溶液的浓度多大?
解溶质量250×95%=237.5(克),溶液量=50000+250=50250(克),答:这种溶液的浓度约为0.47%。
例6
一种浓度为20%的可湿性农药,要加水399倍稀释后喷射,用以防治害虫,这时溶液的浓度多大?
解1份农药,399份水,溶液为400份,1份农药中含纯药20%。
答:加水后的浓度为0.05%。
例7
把2千克浓度为52%的酒与3千克浓度为38%的酒混合,求混合后的浓度。
解混合后,溶液量为(2+3=)5(千克),溶质(纯酒精)量为:2×52%+3×38%=2.18(千克),答:混合后的浓度为43.6%。
例8
要把浓度为5%的盐水40千克,配制成浓度为8%的盐水,需要加盐多少千克?
解设需要加盐x千克,则x+40×5%和(40+x)×8%都是加盐后溶液中的含盐量,所以有,x+40×5%=(40+x)×8%
x+40×5%=40×8%+x?8%
x=40×8%-40×5%+x?8%
x-x?8%=40(8%-5%)
(1-8%)x=40(8%-5%)
x=40(8%-5%)÷(1-8%)x≈1.3
答:需要加盐约1.3千克。
求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除。
答案与解析:
根据此数的末两位数是56,设所求的数写成100a+56
由于100a+56能被56整除,所以100a是56的`倍数
100是4的倍数,所以a能被14整除,所以a应是14的倍数
此数的数字和等于56,后两位为5+6=11
所以a的数字和等于56-11=45
具有数字和45的最小偶数是199998,但这个数不能被7整除
数字和为45的偶数还可以是289998和298998
但前者不能被7除尽,后者能被7整除
所以本题的答数就是29899856。
120名少先队员选举大队长。有甲、乙、丙三个候选人,每个少先队员只能选他们之中一个人,不能弃权。若前100票中,甲得了45票,乙得了35票,甲要当选至少还需要多少张选票。
答案与解析:
尚剩120—100=20张,甲已比乙多45-35=10张。如果20张中,甲得5张,那么乙得15张,与甲的票数持平。
如果20张中甲得6张,那么乙至多得14张,甲比乙多10+6-14=2张,所以甲再得6张即可当选。
1、菜场里面瘦肉的单价是肥肉的2倍,奶奶买了2千克的瘦肉和8千克的肥肉,共用去216元,1千克瘦肉多少元?1千克肥肉多少元?
答案:肥肉:18元,瘦肉:36元
解析:假设216全部买的肥肉,那么肥肉的价格为:216÷(2x2+8)=18元,瘦肉就是:18x2=36元
2、某人看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩下20页,这本书一共有多少页?
答案:60页
解析:设这本书一共有X页,第一天看了25%X页,第二天看了(25%X+10)页。
那么:X-25%X-(25%X+10)=20,解得X=60页
3、果园里有果树3600棵,苹果树与梨树的棵树比是2:1,梨树和桃树的棵树比是3:1。那么果园里三种果树各有多少棵?
有题意知:苹果树、梨树和桃树的棵树比是2:3:1,一共是6份。
那么苹果树的棵树是3600×2/6=1200棵,梨树的'数量是3600×3/6=1800棵,桃树的棵树是3600×1/6=600棵。
4、45立方厘米的水结成冰后,冰的体积是50立方厘米,冰的体积比原来水的体积增加了百分之几?
答案:11.1%
解析:已知水的体积是45,冰的体积是50,那么增加了50-45=5,增加的百分数就是5÷45=11.1%
5、老师买了同样6支钢笔和9本笔记本,一共付了90元,已知2支钢笔可以买3个笔记本,求钢笔和笔记本的单价各是多少?
答案:钢笔是7.5元,笔记本是5元一本。
解析:已知2支钢笔可以买3本笔记本,同理,6支钢笔和9本笔记本就相当于18本笔记本,一共付了90元,所以每本笔记本是90÷18=5元,同理算出钢笔是7.5元。
6、有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
答案:20克
解析:原来7%的糖水和新加入糖的质量比为90:3,即7%的糖水质量是新加入糖的30倍,需要加20克糖。
7、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?
答案:432分钟
解析:甲行驶2.5小时的路程,乙用了3.5小时。所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
8、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?
答案:25%
解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/5)÷1/5=25%
我国民间流传着这样一个故事,一位老人临终时决定把家里的17头牛全部分给三个儿子。其中大儿子分得二分之一,二儿子分得三分之一,小儿子分得九分之一,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么也不好分。后来一位邻居用“借来还去”法顺利地把17头牛分完了。
某汽水厂规定:用3个空汽水瓶可换一瓶汽水,某人买了10瓶汽水,问他总共可喝到几瓶汽水?
如果3个空瓶可换1瓶汽水,那么有2个空瓶就可喝到1瓶汽水。这是因为:
有了2个空瓶,再到别人那里“借来”1个空瓶,就可换来1瓶汽水,喝完把空瓶给别人“还去”,这时不欠不余。
10瓶汽水喝完后得10个空瓶,10个空瓶又可换来5瓶汽水,总共可喝到“10+5=15”瓶汽水。
基本概念:
一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:
先将两种分配方案进行比较,分析由于标准的差异造成结果的'变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
题目:学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有几种不同的摞法?
分析:我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法。由于洗的碗要多余拿的.碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法。
答:共有42种摞法。
为了解决农名工子女入学难的问题,某市建立了一套进城农名工子女就学的保障机制,其中一项就是免交"借读费"。据统计,2008年秋季有4200名农民工子女进入主城区中小学学习,2009年有所增加,其中小学增加20%,中学增加30%,这样,2009年秋季增加1080名农名工子女在主城区中小学 学习。如果按小学生每年收"借读费"500元,中学生每年每生收"借读费"1000元计算。
(1)2009年增加的'1080名中小学一共免收多少"借读费"?
(2)如果小学每40名学生配备2名教师,中学每45名学生配备3名教师,按2009年秋季入学后农名工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师 ?
答案与解析:设"2009年"有x名农民工子女进入"小学"、y名农民工子女进入"中学"。
则有:x+y=5000;20%x+30%y=1160;
根据以上两个等式联立解方程组,解得x=3400,y=1600。
所以,2010年在2009年的基础上,"新增"小学生3400×20%=680名,且小学生的"总人数"变为3400+680=4080名;"新增"中学生1600×30%=480名,且中学生的"总人数"变为1600+480=2080名。可知:
(1)共免收"借读费"500×680+1000×480=820000元=82万元。
(2)一共需要配备2×(4080÷40)+3×(2080÷40)=360名中小学教师。
人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米?
答案与解析:用操场现在的面积减去操场原来的面积,就得到增加的.面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
解题思路:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
答题:
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
解题思路:
可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:
解:45+5×3=45+15=60(千克)
答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解题思路:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
答题:
解:4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
解题思路:
根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
解题思路:
根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
答题:
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
6. 学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
解题思路:
第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
答题:
解:第一组追赶第二组的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解题思路:
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
答题:
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
解题思路:
根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
答题:
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
解题思路:
已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
答题:
解:每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
解题思路:
根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
答题:
解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
答:甲乙两地相距560千米。
11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
解题思路:
根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
答题:
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
答:损坏了5箱。
12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
解题思路:
因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
答题:
解:4×2÷(12-4)=4×2÷8 =1(时)
答:第二中队1小时能追上第一中队。
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
解题思路:
由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
答题:
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
答:这堆煤有6000千克。
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
解题思路:
小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
答题:
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支铅笔0.2元。
15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解题思路:
根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
答题:
解:卡车的数量:
360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)
答:可用卡车12辆,客车9辆。
16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
解题思路:
根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
答题:
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
解题思路:
根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
答题:
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解题思路:
由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
答题:
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
解题思路:
根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
答题:
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
解题思路:
已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
答题:
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
21. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?
解题思路:
由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
答题:
解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
22. 一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
解题思路:
由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
答题:
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
23. 用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
解题思路:
由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
答题:
解:(22-10)÷(5-2)=12÷3=4(千克)
答:桶里原有水4千克。
24. 小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
解题思路:
从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。
答题:
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
25. 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
解题思路:
由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
答题:
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
26. 把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
解题思路:
把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
答题:
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
27. 一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
解题思路:
女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
答题:
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
解题思路:
由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。
答题:
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
29. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
解题思路:
由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
答题:
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
30. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
解题思路:
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
答题:
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
31. 在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
解题思路:
根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
答题:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
32. 水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
解题思路:
由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
答题:
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
33. 学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解题思路:
由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
答题:
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
34. 学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
解题思路:
参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。
答题:
解:36+38+5-59=20(人)
答:双科都参加的有20人。
35. 学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
解题思路:
由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。
答题:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
36. 父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
解题思路:
5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
答题:
解:(45-5)÷4+5 =10+5 =15(岁)
答:今年儿子15岁。
37. 有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
解题思路:
“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答题:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
38. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
解题思路:
根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。
答题:
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
39. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
解题思路:
“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
答题:
解:(240+264)÷(20+16)=504÷30 =14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
40. 一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
解题思路:
火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。
答题:
解:(600+1150)÷700 =1750÷700 =2.5(分)
答:火车通过隧道需2.5分。
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
解题思路:
在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。
答题:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
解题思路:
由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
答题:
解:600÷(400-300)=600÷100 =6(分)
答:经过6分钟两人第一次相遇
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
解题思路:
由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。
答题:
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
解题思路:
用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。
答题:
解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
解题思路:
由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。
答题:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
解题思路:
两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。
答题:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
解题思路:
1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。
答题:
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
解题思路:
父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。
答题:
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
解题思路:
根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。
答题:
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
50. 一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
解题思路:
根据只把底增加8米,面积就增加40平方米,?可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。
答题:
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。
1.小学六年级奥数题 篇一
某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
【解析】甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元
乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元
甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元
三人合作一天完成(5/12+4/15+7/20)÷2=31/60,
三人合作一天支付(750+400+560)÷2=855元
甲单独做每天完成31/60-4/15=1/4,支付855-400=455元
乙单独做每天完成31/60-7/20=1/6,支付855-560=295元
丙单独做每天完成31/60-5/12=1/10,支付855-750=105元
所以通过比较
选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元
2.小学六年级奥数题 篇二
(1)写出除以7所得商和余数(不为0)相同的所有数。()。
答案:8、16、24、32、40、48。
(2)一个数被2,3,7除都余1,这个数最小是()。
答案:43。
(3)一个两位数加上3能被5整除,减去3能被6整除。所有满足上述条件的两位数是()。
答案:27、57、87。
(4)求一个最小的自然数,使它除以3余1,除以4余2,除以5余3,除以6余4。这个数是()。
答案:58。
(5)如果某数除492、2241、3195都余15,那么这个数最小是(),是()。
答案:53、159。
3.小学六年级奥数题 篇三
1、ABCDE参赛,AB平均95分,CDE平均85分,5个平均分是多少?
2、小明9次考试成绩分别为:92,88,84,96,99,81,100,80,90问平均分是多少分?
3、小红7次考试分别为:96,95,89,90,91,100,97问7次平均分?
4、小明第一次考了82分,第二次85分,第三次84分,第四次89分,第五次分数比五次平均分多9.6分,问第五次考多少分?
5、小明做题,第一周做了83道,第二周做了74道,第三周做了71道,第四周做64道,第五周做的比前四周平均多4道,问第五周做了几道?
4.小学六年级奥数题 篇四
1、停车场共停24辆车,其中汽车有4个轮子,摩托车有3个轮子,车轮共86个,求汽车和摩托车各几辆?
2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?
3、十元币和五元币共45张,合计350元,求十元币和5元币各几张?
4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?
5、买4元8元10元的笔记本58本,用去468元,已知4元和8元笔记本数量一样多,三种笔记本各买了几本?
5.小学六年级奥数题 篇五
1、甲乙两人骑自行车同时从西镇出发到东镇,甲每小时行15km,乙每小时行10km,甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试问两镇的距离?
2、李叔叔到苹果产地去收购苹果,收购价为每千克0.6元,从产地到水果店距离300千米,运费为每吨每千米1.05元,其他费用为每吨30元,在批发及运输、售出的过程中,苹果的损耗是10%,李叔叔要达到20%的利润,每千克苹果应定价为多少元?
3、灌满—个水池,只打开A管要8小时,只打开B管要10小时,只打开C管要15小时。开始时只打开A管和B管,中途关掉A管和B管,然后打开C管,前后共用了10小时15分灌满了水池。那么C管打开了几小时?
4、有一路公共汽车,包括起点和终点共有15个车站。如果一辆车除终点站外,每一站上车的乘客中,恰好各有一位乘客到这一站以后的每一站下车。要保证车上的乘客没人都有座位,这辆车至少有多少个座位?
5、甲和乙同时从家中出发相向而行。甲每分钟走52米,乙每分钟走70m,二人在途中的A处相遇。若甲提前6分钟出发,速度不变,乙每分钟走98米,两人仍在A处相遇。甲乙的家相距多少米?
1.小小学六年级奥数题 篇一
1、老师买了同样6支钢笔和9本笔记本,一共付了90元,已知2支钢笔可以买3个笔记本,求钢笔和笔记本的单价各是多少?
答案:钢笔是7.5元,笔记本是5元一本。
解析:已知2支钢笔可以买3本笔记本,同理,6支钢笔和9本笔记本就相当于18本笔记本,一共付了90元,所以每本笔记本是90÷18=5元,同理算出钢笔是7.5元。
2、有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
答案:20克
解析:原来7%的糖水和新加入糖的质量比为90:3,即7%的糖水质量是新加入糖的30倍,需要加20克糖。
3、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?
答案:25%
解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/5)÷1/5=25%
2.小学六年级奥数题 篇二
1、A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
答案与解析:
最远可以深入沙漠360千米
设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
2、六年级同学参加学校的数学竞赛。试题共50道。评分标准是:答对一道给3分,不答给1分,答错倒扣1分。请你说明:该班同学得分总和一定是偶数。
答案与解析:如果50道题都答对,共可得150分,是一个偶数。每答错一道题,就要相差4分,不管答错多少道题,4的倍数总是偶数。150减偶数,差仍然是一个偶数。同理,每不答一道题,就相差2分,不管有多少道题不答,2的倍数总是偶数,偶数加偶数之和为偶数。所以,全班每个同学的分数都是偶数。则全班同学的得分之和也一定是个偶数。
3.小学六年级奥数题 篇三
(1)写出除以7所得商和余数(不为0)相同的所有数。()。
答案:8、16、24、32、40、48。
(2)一个数被2,3,7除都余1,这个数最小是()。
答案:43。
(3)一个两位数加上3能被5整除,减去3能被6整除。所有满足上述条件的两位数是()。
答案:27、57、87。
(4)求一个最小的自然数,使它除以3余1,除以4余2,除以5余3,除以6余4。这个数是()。
答案:58。
(5)如果某数除492、2241、3195都余15,那么这个数最小是(),是()。
答案:53、159。
4.小学六年级奥数题 篇四
1、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的'成绩均在75~95分之间。问:至少有几名学生的成绩相同?
答案与解析:
120÷2=60,90÷2=45,每两棵树之间的距离是它们的公约数。(120,60,90,45)=15,一共要:(120+90)×2÷15=28(棵)。
2、一块长方形草地,长120米,宽90米。现在在它的四周种树,要求四个角和各边中点都要求种树,且相邻两棵树之间的距离都相等。请问:最少要种多少棵树?
答案与解析:
120÷2=60,90÷2=45,每两棵树之间的距离是它们的公约数。(120,60,90,45)=15,一共要:(120+90)×2÷15=28(棵)。
5.小学六年级奥数题 篇五
1、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
答案:
设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x
则0.1X=2aXa=0.05
答:每千克水果降价0.05元
2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:
首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。